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Lecture 9: Distinguishing (discrete)
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1 Problem Setting

Suppose we have two known discrete distributions p,q over [n] and an adversary
that picks one of these distributions (D). We get m i.i.d. samples from D.

We want to find an algorithm A such that:

• If D = p, A returns “D = p”

• If D = q, A returns “D = q”

We want a success probability ≥ 2
3

Later in the lecture, we look at the more general case of success probability
≥ 1− δ

2 Case for m = 1 (Review from HW1)

The total variation distance between two probability distributions is defined as:

Definition 1 (Definition 9.1). Given two known discrete probability distribu-
tions p,q over [n], the Total Variation distance dTV (p,q) between p and q is
defined as:

dTV (p,q) :=
1

2

∑
i

|pi − qi| =
1

2
∥p− q∥1 = sup

A⊆[n]

(p(A)− q(A)) .

[Theorem 9.2 (Variant of Neyman-Pearson Lemma)] For m = 1 sample from
D. There exists an algorithm A (such as the Maximum Likelihood Tester) such
that:

P(A = p | D = p)−P(A = p | D = q) = P(A = q | D = q)−P(A = q | D = p) = dTV (p,q).

Secondly, there does not exist an algorithm A such that:

P(A = p | D = p)− P(A = p | D = q) > dTV (p,q).

This also means there is no algorithm A such that the gap is greater than:

dTV (p,q)

. This implies that there is no algorithm A such that both of the following hold:
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• P(A = p | D = p) > 1
2 + 1

2dTV (p,q)

• P(A = q | D = q) > 1
2 + 1

2dTV (p,q)

It is, however, possible for an algorithm to satisfy one out of two (Ex: Hard
code tester that always says p)
So if dTV (p,q) < 1

3 , there is no algorithm that will succeed in distinguishing
between two distributions with probability ≥ 2

3 .

3 Case for m > 1

Question: Given known discrete distributions p and q, what is the smallest m
to win the game? (from beginning of lecture)

Answer: In this task, m is the sample complexity. Consider the problem
through the lens of what we already know: m i.i.d. samples from D = one
sample from D⊗m. Under this lens, m needs to be big enough such that
dTV (p

⊗m,q⊗m) ≥ 1
3 . Say we want to prove a lower bound on m, we need

an upper bound of dTV (p
⊗m,q⊗m):

Fact 1 (Fact 9.3). For discrete probability distributions p,q, and for any m > 0:

dTV (p
⊗m,q⊗m) ≤ m · dTV (p,q).

Proposition 1 (Proposition 9.4). Sample Complexity = Ω
(

1
dTV (p,q)

)
samples

to successfully distinguish between p,q with probability ≥ 2
3 .

Question: Is Ω
(

1
dTV (p,q)

)
tight?

Answer: Yes. Consider Ber(0) vs Ber(dTV (p,q)). In this case, we need O( 1
dTV (p,q) )

samples
Question: Can we do O( 1

dTV (p,q) ) samples in general?

Answer: No

Proposition 2 (Proposition 9.5). Sample complexity ≤ O
(

1
dTV (p,q)2

)
Proof. Let A = arg supA⊆[n] (p(A)− q(A))

Estimate D(A) = E
x∈D

{1A} to additive error dTV (p,q)
3

Now, we return the closer of p(A) and q(A)
Since dTV (p,q) = p(A) − q(A), if the error for our estimate of D(A) is

within dTV (p,q)
3 , we can distinguish between p and q by returning the closer of

p(A) and q(A)

Our estimation of D(A) = E
x∈D

{1A} to additive error dTV (p,q)
3 results in the

estimation of the mean of 1A, which is a 0 to 1 Bernoulli random variable with
unknown probability.
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By Hoeffding, this can be done in

O

(
1

dTV (p,q)2

)
samples

Question: Is this bound tight?
Answer: Yes, in the worst case. Example: Ber

(
1
2 ± ϵ

)
needs Ω

(
1
ϵ2

)
samples.

Definition 2 (Definition 9.6(Squared Hellinger Distance). The Squared Hellinger
distance is given by:

d2H(p,q) =
1

2

∑
i

(
√
pi −

√
qi)

2
= 1−

∑
i

√
piqi.

More properties:

Fact 2 (Fact 9.7).

d2H(p,q) ≤ dTV (p,q) ≤
√
2 · dH(p,q)

Furthermore:

d2H(p⊗m,q⊗m) = 1−
(
1− d2H(p,q)

)m ≤ m · d2H(p,q)

Therefore:

dTV (p
⊗m,q⊗m) ≤

√
2 ·

√
m · dH(p,q)

Proposition 3 (Proposition 9.8). Distinguishing p vs q with probability ≥ 2
3

requires

Θ

(
1

d2H

)
samples.

Proof.

Ω

(
1

d2H

)
samples needed.

If m ≤ 1

100 · d2H
, then dTV (p

⊗m,q⊗m) ≤
√
2 ·

√
m · dH ≤

√
2

10
<

1

3
.

O

(
1

d2H

)
samples suffices.

Proof: First, we prove the sample complexity is Ω( 1
d2
H(p,q)

)
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We have:
m = 1

100d2
H(p,q)

⇒ dTV (p
⊗m,q⊗m) ≤

√
2 ·

√
1

100d2
H(p,q)

· dH(p,q) =
√
2

10 < 1
3

We also have:

dTV (p
⊗m,q⊗m) ≥ d2H(p⊗m,q⊗m)

= 1− (1− d2H(p,q))m

≥ 1− e−md2
H(p,q)

Now we take m = O
(

1
d2
H(p,q)

)
, and note that dTV (p

⊗m,q⊗m) ≥ 2
3 . This

gives us two choices

1. We use the 1-sample dTV -Tester to conclude that we needO
(

1
d2
TV (p⊗m,q⊗m)

)
samples of D⊗m, by Proposition 11.5.

2. We observe the Maximum Likelihood Estimator for D⊗m works since:

P(MLE = p | p) ≥ P(MLE = p | p)−P(MLE = q | p) = dTV (p
⊗m,q⊗m) ≥ 2

3

Succeeding with 1− δ Probability

[Theorem 9.9] Distinguishing p vs q with probability ≥ 1− δ takes

Θ

(
1

d2H(p,q)
· log

(
1

δ

))
samples.

Proof:
Upper Bound: Use a majority vote after repeating θ(log 1

δ ) times. (From
Proposition 11.8)

Lower Bound: The lower bound requires a tighter inequality of:

d2H ≥ 1−
√
1− d2TV (p,q).

4 Application: Mean Estimation

We aim to estimate the mean of a Bernoulli distribution Bernoulli(p) with an
additive error ϵ and a probability of success at least 2

3 . Two methods have been
discussed in previous lectures:

1. Computing the sample mean, which requires O
(

p(1−p)
ϵ2

)
samples to achieve

a probability of success of 2
3 .
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2. Using the Median of Means, which requires O
(

p(1−p)
ϵ2 log 1

δ

)
samples to

achieve a success probability of 1− δ.

Both of these methods provide upper bounds on the sample complexity. Uti-
lizing tools from this lecture, we can also establish corresponding lower bounds.
If the mean p can be estimated within an additive error ϵ, then it becomes pos-
sible to differentiate between Bernoulli(p) and Bernoulli(p + 2ϵ). If the sample
size is too small to distinguish these distributions, then the mean cannot be es-
timated within the desired error threshold. To simplify calculations, we instead
compute the squared Hellinger distance, assuming p = Bernoulli(p + ϵ) and
q = Bernoulli(p− ϵ), as follows:

d2H(p,q) = Θ

((√
1− p+ ϵ−

√
1− p− ϵ

)2
)
+Θ

((√
p+ ϵ−

√
p− ϵ

)2)
.

For ϵ < p, we derive:

(√
p+ ϵ−

√
p− ϵ

)2
= p

(√
1 +

ϵ

p
−

√
1− ϵ

p

)2

= p

(
1 + Θ

(
ϵ

p

)
−
(
1−Θ

(
ϵ

p

)))2

= p ·Θ
(
ϵ2

p2

)
= Θ

(
ϵ2

p

)
.

Similarly, when p < 1
2 , we compute:(√

1− p+ ϵ−
√
1− p− ϵ

)2

= Θ

(
ϵ2

1− p

)
.

Thus, combining both cases, for p < 1
2 and ϵ < p:

d2H(p,q) = Θ

(
ϵ2

p

)
= Θ

(
ϵ2

p(1− p)

)
.

We conclude with the following key results:

1. According to Proposition 9.8, distinguishing between the two distributions
with success probability 2

3 requires at least:

Ω

(
p(1− p)

ϵ2

)
samples.

2. By Theorem 9.9, achieving a success probability of 1− δ demands at least:

Ω

(
p(1− p)

ϵ2
log

1

δ

)
samples.
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