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Lecture 9: Distinguishing (discrete)
distributions, Various statistical distances

Lecturer: Jasper Lee Scribe: Liam Glenn

1 Problem Setting

Suppose we have two known discrete distributions p, q over [n] and an adversary
that picks one of these distributions (D). We get m i.i.d. samples from D.
We want to find an algorithm A such that:

o If D =p, Areturns “D = p”
o If D =q, Areturns “D =q”

We want a success probability > %
Later in the lecture, we look at the more general case of success probability
>1-9

2 Case for m =1 (Review from HW1)

The total variation distance between two probability distributions is defined as:

Definition 1 (Definition 9.1). Given two known discrete probability distribu-
tions p,q over [n], the Total Variation distance drv(p,q) between p and q is
defined as:

1 1
drv(p,q) := B 21: |pi —ai|l = §||p —ql: = ASE[I:L] (p(A) —q(A4)).

[Theorem 9.2 (Variant of Neyman-Pearson Lemma)] For m = 1 sample from
D. There exists an algorithm A (such as the Mazimum Likelihood Tester) such
that:

P(A=p|D=p)-P(A=p|D=q)=P(A=q|D=q)-P(A=q|D=p)=drv(p,q)
Secondly, there does not exist an algorithm A such that:
P(A=p|D=p)-P(A=p|D=q)>drv(p,q)
This also means there is no algorithm A such that the gap is greater than:

dTV (p7 q)
. This implies that there is no algorithm A such that both of the following hold:



e P(A=p|D=p)>1+Lldrv(p,q)
e P(A=q|D=4q) > 5+ 3drv(p.q)

It is, however, possible for an algorithm to satisfy one out of two (Ex: Hard
code tester that always says p)

So if drv(p,q) < %, there is no algorithm that will succeed in distinguishing
between two distributions with probability > %

3 Case for m > 1

Question: Given known discrete distributions p and q, what is the smallest m
to win the game? (from beginning of lecture)

Answer: In this task, m is the sample complexity. Consider the problem
through the lens of what we already know: m i.i.d. samples from D = one
sample from D®™. Under this lens, m needs to be big enough such that
dry (p®™, q®™) > % Say we want to prove a lower bound on m, we need
an upper bound of dry (p®™, q®™):

Fact 1 (Fact 9.3). For discrete probability distributions p, q, and for anym > 0:

®m, ®m)

dry (PP, q%™) < m - drv(p,q).

Proposition 1 (Proposition 9.4). Sample Complezity = Q (m> samples
to successfully distinguish between p,q with probability > %

. . 1 .
Question: Is (m) tight?

Answer: Yes. Consider Ber(0) vs Ber(dry (p,q)). In this case, we need O(m)
samples

Question: Can we do O(g- 1

Zrv(py) samples in general?

Answer: No

Proposition 2 (Proposition 9.5). Sample complezity < O (m)

Proof. Let A = argsup 4, (P(A) — a(4))

Estimate D(A) = ]ED{]lA} to additive error w
x

Now, we return the closer of p(A) and q(A)
Since dry(p,q) = p(A) — q(A), if the error for our estimate of D(A) is

M, we can distinguish between p and q by returning the closer of

within 3
p(A) and q(A)
Our estimation of D(A) = IEED{]l A} to additive error w results in the

x

estimation of the mean of 1 4, which is a 0 to 1 Bernoulli random variable with
unknown probability.



By Hoeffding, this can be done in
O( L > samples
a—— m
drv(p,q)? P

Question: Is this bound tight?
Answer: Yes, in the worst case. Example: Ber(% + e) needs ) (6%) samples.

Definition 2 (Definition 9.6(Squared Hellinger Distance). The Squared Hellinger
distance is given by:
1
d(p,q) = B > (Vpi— V@) =1- > Vit
More properties:

Fact 2 (Fact 9.7).
di(p.q) < drv(p,q) < V2-du(p.q)

Furthermore:

Ay (P, q¥") =1 - (1= dy(p,q))” < m-dy(p.q)
Therefore:

dry (p®™,q®™) < V2-v/m - du(p,q)
2

Proposition 3 (Proposition 9.8). Distinguishing p vs q with probability > %

3
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If m < ———, then dry(p®™,q%™) < V2-Vm-dy <
100 - d%

1
O (2) samples suffices.
Ay

Proof: First, we prove the sample complexity is Q(ﬁ)
#(p,q)



‘We have:
m = m = dTV(P®m7q®m) <V2- m ~du(p,q) =
We also have:

sfo
AN
W=

dryv (¥, q®™) > d3;(p®™, q¥™)
=1-(1-dy(p,a)"
> 1 — e~ mdu(P.a)

Now we take m = O(

gives us two choices

m), and note that dTV(p®m,q®m) > % This

1. We use the 1-sample d7y-Tester to conclude that we need O (W)
Tv P I )

samples of D®™ by Proposition 11.5.

2. We observe the Maximum Likelihood Estimator for D®™ works since:

2
P(MLE = p | p) > P(MLE = p | p)—P(MLE = q | p) = dzv (p®™,q*") > 3
O

Succeeding with 1 — ¢ Probability
[Theorem 9.9] Distinguishing p vs q with probability > 1 — § takes

1 1
O ———-log| = samples.
(dixp,q) ¢ (6)) Y
Proof:

Upper Bound: Use a majority vote after repeating 0(log%) times. (From
Proposition 11.8)

Lower Bound: The lower bound requires a tighter inequality of:

dfy >1—/1—d%,(p,q).

4 Application: Mean Estimation

We aim to estimate the mean of a Bernoulli distribution Bernoulli(p) with an
additive error € and a probability of success at least % Two methods have been
discussed in previous lectures:

1. Computing the sample mean, which requires O (p(lgp)) samples to achieve

a probability of success of %



2. Using the Median of Means, which requires O (”(15;’7) log %) samples to
achieve a success probability of 1 — 6.

Both of these methods provide upper bounds on the sample complexity. Uti-
lizing tools from this lecture, we can also establish corresponding lower bounds.
If the mean p can be estimated within an additive error €, then it becomes pos-
sible to differentiate between Bernoulli(p) and Bernoulli(p + 2¢€). If the sample
size is too small to distinguish these distributions, then the mean cannot be es-
timated within the desired error threshold. To simplify calculations, we instead
compute the squared Hellinger distance, assuming p = Bernoulli(p + €) and
q = Bernoulli(p — €), as follows:

d%(p,Q)z(%((\/l—ere—\/1—p_€)2) +@((\/m_\/ﬁ)2>_

For e < p, we derive:

1 .
5, we compute:

(\/1—p+e—\/1—p—e)2:@( ‘ )

Similarly, when p <

Thus, combining both cases, for p < % and € < p:

iwa=o(2)=o( )

We conclude with the following key results:

1. According to Proposition 9.8, distinguishing between the two distributions
with success probability % requires at least:

Q (M) samples.
€

2. By Theorem 9.9, achieving a success probability of 1 —¢§ demands at least:

1-— 1
Q ulogf samples.
€2 0



